Published On: March 31, 2014

How to Choose the Right LCD TV

Published On: March 31, 2014

How to Choose the Right LCD TV

With plasma on its way out and OLED taking its time coming to the fore, that leaves trusty old LCD panel televisions for most of those in the market right now. Adrienne Maxwell is here to walk you through the process of getting the LCD television that's right for you.

ID-100153702.jpgAs plasma TVs go gentle into that good night and big-screen OLED technology struggles with major birthing pains, we are faced with an immediate future where LCD is the only flat-panel TV technology for the mass market. Granted, plasma is not dead just yet: even though Panasonic is out of the picture, LG and Samsung will continue to sell plasma TVs this year. However, neither company’s 2014 plasma offerings show any meaningful forward progress, with Samsung already backing away from plans to introduce a new high-end model this summer. The shift to Ultra HD sealed plasma’s fate, as the higher resolution would be quite difficult to achieve on a plasma TV. OLED TVs are also a reality right now, but primarily at the 55-inch screen size and at a very high price point that takes the vast majority of shoppers out of the equation.

Like it or not, that leaves LCD. Many videophiles fall squarely in the “not” category and make LCD out to be the worst technology you could ever ask for, which is a bit of exaggeration. It is true that, in its most basic form, an LCD TV can’t come anywhere close to plasma or OLED in overall picture quality. However, a number of key advancements in LCD technology have resulted in TVs that can perform at a very high level. Of course, you have to pay more – sometimes a lot more – to get these advancements in a top-shelf LCD, and perhaps that’s the biggest downside to the demise of plasma, which could offer high performance at a more reasonable price than the LCD and especially the OLED camps can.

Additional Resources

We have covered these LCD technology advancements in the past, but this seems like a good time for a refresher course. After many years of writing stories telling people how to choose between plasma and LCD, I guess it’s now time to write a story about how to choose the right type of LCD for you, depending on what level of performance and what price point you seek.

ID-10010802.jpgLighting Method
Arguably the single most important decision you can make when selecting an LCD TV is the type of lighting method it employs. Unlike plasma and OLED technologies that are self-emitting (each pixel generates its own light), all LCD TVs require an external light source, and this “always on” light source is the reason early LCDs always struggled to compete with plasma in the important area of black-level performance.

For many years, the primary LCD light source was a cold cathode fluorescent lamp (CCFL), but now the industry has shifted to the use of LEDs. CCFL-based LCDs are growing increasingly rare; many LCD manufacturers have gotten rid of them entirely, but some continue to offer them at the very bottom of the price chain. CCFL-based LCDs are the least energy-efficient, they contain undesirable mercury, and they cannot be precisely controlled the way an LED-based LCD can.

In the LED realm, you have a choice of three different lighting methods. The best and most expensive method is the full-array LED backlight with zone dimming. As the name suggests, this method puts a lot of individual LEDs on a grid behind the LCD panel and divides them into zones. The brightness of each zone can be independently adjusted to suit the image being displayed. For instance, if the image is of a bright moon hanging in a dark sky, the LED zone(s) behind the moon will be brightly illuminated, while the rest of the zones can be completely turned off to reproduce a true black. This allows the image to have much better blacks and contrast than an LCD TV with an always-on backlight.

The drawback is, because the number of LEDs is not a 1:1 ratio with the number of pixels, this lighting method is not as precise as what you can get with self-illuminating plasma and OLED pixels. In the black area just around the bright object, you might notice a glowing or halo effect. The higher the number of dimmable zones the TV has, the more precise the dimming will be. Usually, the more dimmable zones the TV has, the more it will cost. As an example, Vizio will offer full-array LED backlighting in all of its LCD TVs this year; the entry-level E Series has only 18 dimmable zones, while the top-shelf Reference Series has 384 zones.

The second and most popular method over the past couple of years is the edge LED lighting method, in which the LEDs are placed only around the edge of the screen, and the light is directed inward to cover the entire screen area. This design allows for a much thinner, lighter cabinet and is the most energy-efficient. However, this method can also lead to noticeable problems with brightness uniformity around the screen. Put up an all-black test pattern or even just a generally dark image, and you can see that some areas of the screen are clearly brighter than others (some people call this clouding, as the image does indeed look cloudy). There is often obvious light bleed near the edges and corners of the screen.

The more expensive edge-lit LED TVs may include a form of zone dimming. Obviously, since the LEDs are located only around the edges, this dimming is even less precise than what you get in the top-shelf full-array LED models, but it can help minimize issues of brightness uniformity and light bleed. Frankly, I would never buy an edge-lit LED that lacks zone dimming, as I find brightness uniformity issues to be an absolute deal-breaker for movie watching. But, if you primarily watch brighter HDTV/game content and few movies, then you might choose to save money and get an edge-lit LED-based model without the dimming.

Finally, some LCD manufacturers use a lighting method called Direct LED, common in smaller-screen TVs and lower-priced large-screen models. Direct LED uses a backlight grid like the full-array approach, but it does not use as many LEDs and does not include the zone dimming. As a result, the picture may not be quite as bright, and the black level can’t get as dark. Additionally, the cabinet design is usually a little thicker and heavier than the edge-lit approach. Still, screen uniformity can actually be much better, so it’s not necessarily a worse choice to go with Direct LED over edge LED.

Continue on to Page 2 to learn about the Panel Type, Refresh Rate, and Other Factors . . .

ID-10032088.jpgPanel Type
Another long-standing drawback to LCD technology is that the viewing angle is not as good. The image may look great when you’re sitting right in front of it; move off to the sides, though, and image saturation falls off dramatically. Different types of LCD panels (such as Twisted Nematic, Vertical Alignment, and In-Plane Switching) perform differently in their ability to preserve picture quality at wider angles. You can get an overview of the various technologies here.

If your only seating area is directly in front of the TV, then viewing angle may not be a concern. For those who need a TV that can accommodate a wider viewing area, we recommend LCD TVs that use In-Plane Switching (IPS) panels for the widest horizontal viewing angle. The vertical viewing angle may be compromised, though, so you don’t want to mount an IPS panel too high up on the wall. Potential drawbacks to IPS panels are their slower response time and a black level that might not be quite as deep as with other panel types. Samsung’s IPS variant called Plane-to-Line Switching (PLS), which can be a bit brighter and purportedly offers an even better viewing angle, appears in the company’s computer monitors, but has not made the jump to the TV line yet.

refresh_rate.jpgRefresh Rate
Early LCD TVs struggled with the issue of motion blur. Quite simply, faster-moving images look blurry and lose their fine detail. You can read more about why this happens here. To address this, LCD TV manufacturers began increasing the TV’s refresh rate from the standard 60Hz (where the TV shows 60 frames per second) to 120Hz or 240Hz. A TV with a true 120Hz refresh rate will have better motion resolution than one with a 60Hz rate, and a TV with true 240Hz refresh rate will be better still, although this step up might be harder to see. The LCD TVs are priced accordingly: budget models often have only a 60Hz refresh rate, whereas the top-of-the-line TVs will have a 240Hz refresh rate. You might even see numbers like 480 or 960; in most cases, these TVs combine a 240Hz refresh rate with some type of backlight scanning to simulate the even higher refresh rate.

If you invest in a TV with a higher refresh rate, there’s something very important to look for – namely, how does the manufacturer add frames to get the higher refresh rate? Some manufacturers add frames solely through the use of frame interpolation, in which the TV analyzes two existing frames, interpolates what it thinks should come in between them, and creates an entirely new frame. This method results in a smoothing effect that isn’t noticeable with video-based content like sporting events, but can be very noticeable with film sources. Because of a process called 3:2 pulldown, 24-frames-per-second film sources displayed on a 60Hz TV have choppy motion (we call it judder). Over the years, we have gotten used to film looking a certain way on TV, but frame interpolation can remove the judder completely to create very smooth, video-like motion (often dubbed the Soap Opera Effect). Some people really like this smoothing effect; others (myself included) hate it. If you fall in the latter camp, then you likely won’t want to enable the smoothing function, and thus you won’t get the blur-reduction benefits you paid for.

Other manufacturers give you more choices in their 120Hz and 240Hz setup menus. Some modes will employ frame interpolation, while others will simply repeat frames or insert a black frame, which cuts down on motion blur without adding the smoothing effect. Black frame insertion can reduce light output and, in some implementations, create distracting flicker, so that’s something to watch out for, too.

Ultimately, you need to make sure that, if you’re going to pay more for the higher refresh rate, you pick a TV that offers the blur-reduction method you prefer.

Other Factors to Consider
Of course, there are plenty of other factors to keep in mind when shopping for an LCD TV, beyond the three performance elements above. Are you ready to take the Ultra HD plunge at this early stage, even though UHD sources are currently scarce (to put it mildly)? UHD TVs will cost you more than their 1080p counterparts within a company’s line. If you go down that road, make sure the UHD TV has HDMI 2.0 or DisplayPort inputs to accept UHD content at higher refresh rates. If you’re really concerned about compatibility with future UHD sources, look for an Ultra HD model that supports 10-bit color and the wider color gamut of the Rec 2020 spec (get more details here).

As for other features that can add to the TV’s bottom line, do you want a smart TV with integrated apps for Netflix, Hulu Plus, Pandora, etc? How about built-in WiFi so you don’t have to run an Ethernet cable to the networkable TV? Voice and/or motion control are now offered on many top-shelf TVs. Do you want 3D capability and, if so, how many pairs of glasses will you need? If the manufacturer includes limited to no glasses in the package, then you’ll have to buy them separately, which adds to the cost. How important is the TV’s aesthetic? The most attractive, interesting designs generally sit at the top of the product line.

And there you have it: a few tips to help you shop in an LCD-centric world. Now we’d like to hear from our videophile friends. How do you feel about the prospect of an LCD-only marketplace? Do you see yourself ever buying an LCD TV, or will it be black-market plasma TVs until OLED finally becomes a meaningful (and affordable) presence? Let us know in the Comments section below.

Additional Resources

Subscribe To Home Theater Review

You'll automatically be entered in the HTR Sweepstakes, and get the hottest audio deals directly in your inbox.
0 0 votes
Article Rating
Subscribe
Notify of
guest
5 Comments
Inline Feedbacks
View all comments
weekendtoy

I’ll be hanging onto my plasma until OLED becomes ‘affordable’. Not a fan of LCD at all.

Panasonic India

These are really useful tips for choosing the right TV. Anyone who is in planning to buy the best TV can use above specified tips.

inazsully

Two points that you glossed over. Do you want Passive or Actuve 3D? Yes it makes a big difference to some of us. When dismissing plasma and mentioning that Samsung and LG have not announced any upgrades to the 2013 line up, that Samsung’s 8500 series was decleared the best picture available by several publications and a close second only to no longer available Panasonic. Let’s wait and see how the best LCD’s compare in direct shootouts to the 8500 series from Samsung. 2K or 4K I don’t care. The best PQ is the best PQ and then we’ll consider bang for the buck.

Adrienne Maxwell

I agree with you about the Samsung 8500 Series plasma, and I would likely choose it over most LCDs right now. The big question is, how long will Samsung continue to offer it? This year, yes. Next year, we just don’t know. My point in the story was, given both Samsung and LG’s lackluster plasma introductions this year, their commitment to the technology is waning. This time next year, there may not be an 8500 Series plasma to compare in a shootout.

John Johnsen

Great article. Since the majority of the technology methods are hidden by tv manufactures – especially when shopping on the fly, how about a table showing what models use what technologies? You’d be my absolute hero…

© JRW Publishing Company, 2020
magnifiercross
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram